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F-model-type phase transition in the 2~ Flory model of polymer 
melting 
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Service de Physique ThCorique, CEN-Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 1 July 1985, in final form 11 December 1985 

Abstract, In this paper we perform a transfer matrix study of the F model and the Flory 
model of polymer melting. For the F model, which can be reformulated in terms of 
polymers, we calculate numerically the exponent v( T) of the massless phase and our 
results are in good agreement with recent conjectures. For the Flory model we find a very 
similar behaviour suggesting that these two models have the same kind of transition. The 
discrepancy with Monte Carlo calculations where a first-order phase transition has been 
found is discussed. 

1. Introduction 

The problem of polymer melting has recently attracted renewed interest in the literature, 
mainly because of a recent disproof of the Flory theory (see Nagle et a1 (1984) for a 
review). The problem is to describe a possible transition from an extended chain 
crystalline state in which the internal degrees of freedom of molecules are well ordered 
to a fluid phase in which these internal degrees of freedom are disordered. 

The simplest theoretical model for handling this problem is a lattice model which 
was proposed by Flory (1956) 30 years ago. In this model one considers a Hamiltonian 
walk (i.e. a self-avoiding walk which passes through all sites of a square or cubic 
lattice). This walk represents a polymer whose rigidity is taken into account by 
associating with each bond which is not collinear with the preceding one (‘gauche’ 
bond) an energy E > 0 (see figure 1). One then has a competition between rigidity and 
entropy effects. In particular at T=co one recovers the classical Hamiltonian walk 
while at T = O  the polymer is completely ordered and all bonds are parallel to one 
axis of the lattice. This model is generally expected to contain the essential features 
of the physics of polymer melting although more sophisticated models have been 
introduced recently in 2 ~ ,  presenting in particular the property of ‘Gridlock’ (Nagle 
1985). We will not discuss such models here. 

The first study of this model is due to Flory (1956). His method consists in evaluating 
with a kind of mean-field-type approximation the entropy per site s(g) as a function 
of the fraction g of gauche bonds. The main result is that for g smaller than a finite 
non-zero value g o ,  the entropy s(g) is zero, i.e. the number of configurations grows 
slower than exponentially with the size of the system. This leads then to the prediction 
of a first-order phase transition, the low-temperature phase being completely ordered 
and inactive and g jumping from 0 to a finite value g,> go at T = T,. In this Flory 
treatment the result is valid for all dimensionalities and for modified versions of the 
problem where one considers, for instance, a fixed concentration of polymers and of 
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solvent molecules. A slightly modified treatment involving the Huggins (1942) approxi- 
mation has also been given (Gibbs and di Marzio 1958). The approximation of 
Flory-Huggins gives the exact result when applied to another two-dimensional model, 
the KDPf model (Nagle 1974). While the Flory-Huggins result was also in agreement 
with experiments on real polymers in three dimensions, it has been considered for a 
long time that this treatment was at least qualitatively correct. The results have been 
applied in particular in the Gibbs-di Marzio (1958) theory of the glass transition. 

Twenty years later however, Gujrati (1980, 1982) and Gujrati and Goldstein (1981) 
have shown the existence of an important failure in the Flory treatment. Their method 
consists in evaluating explicitly in the 2~ or in the 3~ case the number of a certain 
kind of Hamiltonian walk, obtaining in this way a lower bound to s ( g )  which is not 
zero except at g = 0. This shows that the essential result of the Flory-Huggins approxi- 
mation is wrong. There was then no more reason to believe in the results of the Flory 
treatment and the authors raised the question of the nature of the transition-if any-in 
the general case. 

Figure 1. A typical piece of a Hamiltonian walk o n  the square lattice. In the Flory model 
an energy E is associated with each comer of the polymer. 

Recently, Baumgartner and Yoon (1983) performed Monte Carlo simulations of 
the model in two and three dimensions, obtaining indications of a first-order phase 
transition in each case, with a low-temperature phase which is almost completely 
ordered, the Flory-Huggins results becoming better when one goes from 0 = 2  to 
D = 3 as is expected for a mean-field-type approximation. 

The purpose of this paper is to carry out a transfer matrix study of the Flory model 
on strips and to give evidence of an F-model-type? phase transition in the 2~ case. 
The paper is organised as follows. In § 2 we study the F model on strips. This model, 
which is solvable only in the thermodynamic limit, can be interpreted in terms of a 
polymer problem similar to the Flory model, so our study will give a qualitative 
understanding of the finite-size effects in these polymer problems. We will in particular 
extract from the correlation lengths predictions for q( T) which confirm recent conjec- 
tures. In 0 3 we carry out a similar study of the Flory model, obtaining a strong 

t This model is defined and studied in detail in Baxter (1982). 
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indication of the same kind of transition, with a non-diverging specific heat, a correlation 
length scaling as N for T > T, and a susceptibility scaling as a power of N in part of 
the high-temperature region. In 0 4 we study modifications of the model and suggest 
that, as in the X Y  case, a small modification of the rules could give strong modifica- 
tions of the nature of the transition. This could explain the discrepancy between our 
results and those of Monte Carlo simulations. 

2. The F model on strips 

In this section we present a numerical transfer matrix study of the F model on strips. 
This model is a particular six-vertex model (see the energies in figure 2) which is 

almost completely solved in the thermodynamic limit only (Lieb and Wu 1972, Baxter 
1982). As Nagle (1974) has pointed out, this model can be interpreted in terms of 
polymers. Let us choose one sublattice of the square lattice and put a link of polymer 
on each arrow which goes outwards from a site of this sublattice. Because of the 
allowed vertex configurations one gets in this way two polymer links attached to each 
site. The sites where these two links are not collinear correspond to vertices 1-4 and 
have an energy E (see figure 3). The F model thus has many features in common with 
the Flory model. However because the polymer-arrow correspondence is defined 
locally one loses the connectivity constraint of a single Hamiltonian walk. If one 
considers a finite system with free boundary conditions as in figure 3 it is now filled 
by several non-intersecting self-avoiding walks of varying length whose extremities are 
on the boundary, and also by polymer loops. When the system becomes infinite, the 
main difference with the Flory model is the presence of these loops. This is an 
unphysical feature whose consequences are difficult to evaluate a priori. We have + + + + + +  

E E c E 0 0 

Figure 2. Energies of the F model. The two other possible vertices are forbidden by the 
ice rule. 

Figure 3. Example of a polymer version of a typical configuration of the F model. Bold 
lines represent polymer links. 
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carried out a study of this model by the transfer matrix method on strips of finite width 
N. The lattice is the square lattice with the strip axis parallel to the (1,O) direction 
(normal strip). We have taken periodic boundary conditions. The matrices have been 
written in this polymer representation. Transfer matrices for polymers are now well 
known (see Enting 1980, Demda 1981, Derrida and Herrmann 1983). 

The first quantities we will study are the thermodynamic ones. They are known in 
the thermodynamic limit where it has been shown that the model has a transition of 
infinite order at Tc= (log 2)-' (with k, = E = 1). At this point all thermodynamic 
quantities have an essential singularity of the type exp(-constant x IT - Tcl-1'2) (Lieb 
and Wu 1972, Baxter 1982). The specific heat does not diverge but has a maximum 
at a value T > Tc. The exponent a can be taken as negative and infinite. As an example 
of the efficiency of the study on strips we give in figure 4 the specific heat C ,  per site 
on strips of width N. There are some parity effects which are often encountered in 
this kind of polymer model (Saleur 1986) but the results for each parity converge 
respectively in a regular and rapid way to their exact values. 

I 
0 6 ia l  N.0 

0 'P,  1 

P 

02C 

L 

0 P c  1 

P 

Figure 4. Plot of the specific heats per site C,v in the F model. ( a )  N even, ( b )  N odd. 
C, and p, are the critical specific heat and critical temperature, respectively. The dotted 
curves are the results for the infinite system. 

More interesting and generally not exactly known are the electric quantities of the 
F model to which we turn now. 

The F model is an antiferroelectric model. At T = 0 it is completely ordered with 
vertices of type 5 and 6 only. The order parameter is a staggered polarisation. In 
terms of polymers the two ground states correspond to the situation where all polymer 
links are aligned parallel to one of the two axes of the lattice. In terms of polymers 
the order parameter can be taken: 

m = n h - n ,  (1) 
where nh and n., are respectively the number of horizontal (vertical) links per site. 
This order parameter grows as T =  T, with an exponent p which can be taken as 
infinite. Its general form is exactly known (Baxter 1973). On a strip of width N the 
two ground states correspond to the polymer links aligned parallel to the axis of the 
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strip or perpendicular to it, forming in this way loops around the strip (we work with 
periodic boundary conditions). For N even, one can go from a region which is in one 
ground state to a region which is in the other ground state by creating an interface of 
energy N. This is not possible for N odd. In this case the transfer matrix breaks into 
two equal submatrices, each corresponding to one preferred orientation. By working 
with one of these submatrices one can observe curves mN as a function of temperature 
which give a good idea, when N grows, of the variation of the order parameter in the 
infinite system, as can be seen in figure 5.  For N even, on the contrary, the symmetry 
between the two directions is respected by the transfer matrix and is always zero. 
This effect of breaking the symmetry for N odd could be easily suppressed by working 
on strips in a diagonal direction, as will be done for the Flory model case. However, 
we have obtained better results by working on normal strips with N even where the 
symmetry is also respected, so we will study this case only in the following. 

0 1 

0 

Figure 5. Shape of the order parameter variations on strips with N odd where the symmetry 
between the two directions of the lattice is broken (see the text). The dotted curve is the 
order parameter in the infinite system. 

When T + T,, the correlation length diverges as exp[constant x ( T,- T)-”2] (this 
corresponds to Y = CO). It is generally supposed (den Nijs 1979, Baxter 1982) that the 
correlation length remains infinite in all the high temperature phase T > T, where the 
correlation functions have an algebraic decay. 

The correlation function for the staggered magnetisation is exactly known for 
T = 2Tc where Baxter (1973) has shown that it decays as l/r2. A general form has 
been conjectured by Black and Emery (1981) which is l / rv  with 

7 = [ 1 - : c o s - ( y - 1 ) ]  - 1  

This gives in particular v( T,) = 1,  7(2Tc) = 2 and ~ ( c o )  = 3 .  The correlation lengths 
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on strips of finite widths have been calculated by 

1 

log/Az/ A ,I 6 N  = - 

where A ,  and A 2  are the two largest eigenvalues of the 

10 

8 

6 
2 

MA . 
h 

4 

2 

ransfer m trix. It can 

(3) 

asily 
be checked, using the polymer arrows correspondence, that this correlation length 
corresponds to the staggered magnetisation correlations. Our results are given in figure 
6 where we have given the curves N / t N  as a function of p. 

The curves collapse in the high-temperature region. This is consistent with the 
existence of a massless high-temperature phase since the finite-size scaling gives 
tN - N at any critical point. For T < T, the curves do not collapse but rather move 
apart. A study of log tN in this region confirms the general expression 

6 N  -exp( N p s )  (4) 
where s is the interfacial tension (Baxter 1982). 

The curves intersect themselves at values of T which go rapidly to T, when N 
grows as can be seen in table 1. The slopes of tN/ N do not stabilise to a finite power 

0 0.5 

P 
Figure 6. Plot of NI&. against p in the F model. The dotted curve is T T (  T )  where 7 
comes from formula (2). (The cusps are due to the second eigenvalue changing of sign.) 

Table 1. Estimates of the critical temperature T, of the F model obtained by the relations 
& J N = tN-21 N - 2. 

4 
6 
8 

10 

1.282 
1.352 
1.408 
1.430 

Expected value 1.443 = (In 2)-'  
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of N, as expected since v can be taken as infinite. (We note that the phenomenological 
renormalisation equations should not a priori give T, since tN is proportional to N 
in all the high-temperature region. This is probably an effect of corrections to scaling.) 

A more complete use of these results can be made using the relation 

5 N  - NIT77 ( 5 )  

which is valid by conformal invariance at any critical point (Cardy 1984). This relation 
gives us estimates of the values v ( T )  which are in reasonable agreement with the 
values conjectured by Black and Emery (1982) from relation (2). This can be seen in 
figure 6 where we have represented the values T V (  T) with 77 deduced from (2) as the 
broken curve. A better zgreement is obtained around T = 2 T C .  For T around T, or 
T going to infinity the results for the smallest sizes do not agree well, but when N 
grows the correct shape is recovered. Successive estimates of 77 for various values of 
T are given in table 2. 

Another interesting quantity which is not exactly known in general and related to 
the correlation length is the staggered susceptibility, which can be interpreted in terms 
of polymers as 

(Here N is the total number of links of a two-dimensional system.) It is exactly known 
only at T = 2 T, where Baxter (1973) has shown that it diverges logarithmically with 
the staggered field. If we believe in the prediction of formula (2), however, we have 
that x is finite for T >  2Tc and infinite for T E  [ T,, 2TJ. On a strip of width N this 
gives the behaviour 

in this region of temperature (Barber 1983). We have studied the scaling behaviour 
of susceptibilities in figure 7.  One observes a saturation of x N  for T >  2Tc. For 
T E [ T,, 2 Tc] log xN grows linearly with log N. The slopes are in reasonable agreement 
with the values 2-  T (  T )  where 7) is taken from formula (2) as is shown in table 3 for 
several values. 

The rather slow convergence (particularly for T around 2 T,) is due to the corrections 
to (7) .  For example Baxter (1973) has conjectured that at T,, x goes as 5 log' 5 and 
this kind of logarithmic correction makes convergence to scaling rather slow. 

Table 2. Values of 1) deduced from the correlation lengths at several temperatures. The 
expected values are those of formula (2). 

2 
4 
6 
8 

10 

~ 

0.6978 - 0.6994 
0.7717 2.218 2.358 
0.8035 2.084 3.460 
0.8402 2.042 3.295 
0.8921 2.019 3.217 

Expected values 1 2 3 
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5 ,  I I 1  

l o g  N 

Figure 7. Scaling study of the susceptibilities in the F model. One can see three regions. 
For T > 2Tc we have 9 > 2. The susceptibility is finite in the thermodynamic limit and we 
observe here a saturation of log xN. For T E [ T,, 2 T,] the susceptibility is infinite for the 
infinite system and scales as N2-" on strips. For T < T, the system is ordered. The 
susceptibility on strips grows exponentially with N. 

Table 3. Values of 1) deduced from the slopes l o g ( ~ ~ / ~ ~ _ ~ ) / l o g ( N / N - 2 )  for several 
values of T. The expected values are 2 - 9( T) where 7 comes from formula (2). The 
rather slow convergence (particularly for T around 2Tc) is due to logarithmic corrections 
(see the text). 

T 

4 
6 
8 

10 

0.5003 0.7285 1.152 
0.4056 0.6338 1.131 
0.3583 0.5957 1.120 
0.3296 0.5680 1.112 

Expected values 0 0.3790 1 

We conclude that the transfer matrix method gives a good picture of the infinite 
order transition and of the massless phase properties in the F model. The results that 
we have obtained will be compared to those for the Flory model to which we turn now. 

3. Transfer matrix study of the Flory model on strips 

The aim of this section is to present a similar transfer matrix study in the case of the 
Flory model. 
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Some technical remarks first have to be made. Because the loops are now forbidden 
one has to decide whether one works with one extremity of the polymer on each side 
of the strip or the two on the same side. For N odd the free energy on the strip is 
obtained with the first case, while for N even, at least for N large enough and T fixed, 
it is given by the second case. For clarity we will present the results for N odd only, 
while the results for N even are very similar. 

As the loops are forbidden, the symmetry between the two directions of the square 
lattice is broken for normal strips. This effect of breaking the symmetry could perhaps 
modify some properties of the model (it is well known that one must be careful when 
choosing a finite geometry for studying Hamiltonian walks (see for instance Gordon 
et a1 1976)). We will thus present results mainly for strips whose axis is parallel to 
the (1 , l )  direction (diagonal strips). Such strips have already been introduced in 
transfer matrix calculations (Derrida and Herrmann 1983). For these strips the sym- 
metry between the two directions is respected and the order parameter is always zero. 
We will work with periodic boundary conditions (free boundary conditions give results 
which are similar but which converge more slowly when N increases). The size of the 
transfer matrices grows very rapidly for these diagonal strips so we will be limited to 
widths N s 7 .  

As a first step we present our results for the entropy per site as a function of the 
fraction g of gauche bonds s N ( g )  in figure 8. In this figure we have also given the 
best prediction of the Flory-Huggins theories and the two bounds obtained by Gujrati 
and Goldstein (1981). One can check the general failure of the mean-field theories 
while the better bound &(g) of Gujrati-Goldstein gives a good idea of the real curve 

0 4  

0 . 3  

0.1 

0 0 2  0 4  06 0 8  1 0  

9 

Figure 8. Study of the entropy per site as a function of the fraction g of gauche bonds in 
the Flory model. We give the results for diagonal strips. Results obtained with normal 
strips where the symmetry between the two directions of the lattice is broken (see the text) 
are very similar. The curve S,, is the better result of Flory-Huggins-type theories while 
iH(g) and dh(g) are the two bounds of Gujrati and Goldstein (1981). The physical region 
stops at g = 0.602 * 0.0005 on the infinite system. 
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0.4  
U N  

0.2 

in the low-temperature region. To determine the nature of the transition-if any-we 
turn to other quantities. 

In figure 9 ( a )  we give the energy per site uN for diagonal strips. We give the 
corresponding specific heat cN in figure 9(b). Contrary to what has been found in the 
Monte Carlo calculation of Baumgartner and Yoon (1983) (see in particular figure 
l (a))  we do not find any indication of a first-order phase transition. The energy 
remains continuous, the specific heat saturates rapidly when N grows and simply has 
a smooth maximum. In figure 10, we give uN and cN for normal strips. We have 
explained why these results must be considered with some caution because the symmetry 
between the two directions is broken. However, as was the case for the F model where 
this symmetry was also broken for normal strips and N odd, these results confirm in 
fact the results obtained with diagonal strips. The maxima of the specific heat for each 

: 1: - 

I 1 1 

1 

l o1  i 
I 
1 

0.6 T 
I L I  

i N=h 

0 0 . 4  0.6  1.2 
P P 

Figure 9. ( a )  Energy per site u . ~  in the Flory model calculated on diagonal strips. ( b )  
Specific heats c N .  These curves can be compared with figure l ( a )  of Baumganner and 
Yoon (1983) where a first-order phase transition has been found, 

0 0 . 4  0.8 1.2 

1 l b )  
N . 9  

0 0 . 4  0.8 1 . 2  
P P 

Figure 10. The same as in figure 9 but for normal strips. The results are very similar to 
those of figure 9. 
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geometry (figures 9( b) and 10( b) )  occur at values of the temperature which surround 
our estimate 

T M  = 1.20 * 0.02. (8)  
This value is slightly higher than the corresponding value in the F model. 

The study of normal strips where the symmetry is broken can also give an idea of 
the shape of the order parameter as was the case for the F model with normal strips 
and N odd. Our results are given in figure 1 1 .  They do not indicate any discontinuity 
(compare with figure l (b )  of Baumgartner and Yoon (1983)). The study of these 
quantities thus shows that there is no first-order phase transition in the Flory model 
case. The discrepancy with Monte Carlo calculations will be discussed later. Our 
results suggest rather that the transition of the Flory model is of the same nature as 
in the F model, as can be seen by comparing figures 4, 9, 10, and figures 5 and 11. 
We will confirm this point by studying the electric properties. From now on we work 
on diagonal strips only where the total symmetry is conserved. 

P 

Figure 11. Order parameter in the Flory model. The calculation is done on strips in the 
normal direction where the symmetry between the two directions is broken. These curves 
do not seem to indicate a discontinuity (compare with figure l ( b )  of Baumgartner and 
Yoon (1983)). 

We have given the correlation lengths for the staggered polarisation in figure 12. 
We have represented 2N/(, in this case because when one takes a strip in diagonal 
direction the unit of length along the strip is half of the unit of length in a perpendicular 
direction. Despite the fact that we have studied just three sizes we think that these 
curves present a collapse in the high-temperature phase which is similar to that of 
figure 6 for the F model, suggesting that in this case the high-temperature phase is 
also massless. The intersections of the curves give an estimate 

for the critical temperature which is slightly higher than in the F model. The order of 
magnitude for the quantity r v ( T )  is the same as in the F model. In particular the 
value of g, is likely to equal 1 as will be confirmed by the study of susceptibilities. In 
the same way for T infinite we obtain values of g compatible with the value g = 3 of 
the F model. This suggests that Hamiltonian walks are critical objects with angular 
correlations decaying as 1/ r3 .  

T,= 1.55*0.05 (9) 
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P 
Figure 12. Plot of 2 N / 5 ,  against p in the Flory model (strips in the diagonal direction). 

One can find the value where 71 = 2 at T =  2.50 although this value is not very 
accurate. 

Finally, we have studied the susceptibilities which are defined as in the F model 
case. The scaling behaviour is given in figure 13. For T high enough xN saturates 
when N grows. For values of T in the region [ 1. 5 5 , 2 .  SO] log xN is linear against 
log N. In particular at our estimate of T, the slopes of log ,yN suggest that 71, = 1 

1 _/-- 

_*/e __-- 
x2 1 _------ 

I! I 

-3 , 
3 5 7 

l o g  N 

Figure 13. Study of the scaling behaviour of susceptibilities for the Flory model (strips in 
the diagonal direction). The broken curve indicates the slope corresponding to vc = 1. It 
compares well with our curve log ,yN against log N at our estimate of T,. 
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although it would be necessary to do calculations on wider strips to confirm this 
hypothesis. 

To conclude this study, we have given strong evidence that the Flory model has a 
behaviour very similar to that of the F model. There are only minor numerical 
differences due to the presence of loops. In particular our results suggest that T,= 1 
in this model as in the F model. It remains to be understood why Monte Carlo 
simulations have given different results. 

4. Comparison with Monte Carlo simulations 

Our result of an F-model-type phase transition disagrees with the first-order phase 
transition found by Baumgartner and Yoon (1983). A first possible explanation is that 
our strips are too narrow to show evidence of such a transition. We think that the 
study of the F model that we have carried out in parallel should eliminate this 
hypothesis, A second possible explanation is that the Monte Carlo simulations have 
observed a kind of gel transition due to the very long relaxation times of the system 
so it would be perhaps interesting to carry out longer simulations. However, we think 
that another explanation is also possible. 

We first recall that Baumgartner and Yoon (1983) have simulated the Flory model 
in a way which is slightly different to that of the original model. They have considered 
a polymer system of 21 chains of 20 segments each on a 21 x 21 square lattice. This 
introduction of 5% of voids and several polymers was a priori expected not to modify 
the nature of the transition and allowed the authors to use the reptation algorithm. 
They have found a jump in energy and magnetisation at T, = 0.93. The shift in critical 
temperature when compared with our results of T,= 1.55 is easily explained by the 
modifications of the system. (As Baumgartner and Yoon have calculated, a Flory 
approximation for a system with 5% of voids gives a critical temperature shifted by 
AT = 0.50 when compared with the result for the original Flory model.) 

We think that an explanation of the discrepancy between our result and the 
first-order phase transition found by these authors could also be given by these 
modifications. It is well known that in the X Y  case, for example, a modification of 
the precise form of the interactions can drive the system to a first-order phase transition. 
(For example, Domany et al (1984), taking as the interaction between spins a power 
of a cosine high enough have given evidence of a first-order phase transition.) 

The first modification of the original Flory model in the simulation of Baumgartner 
and Yoon (1983) is the presence of empty sites. We have thus studied by the transfer 
matrix method a system where voids are authorised. This is easily done by working 
in a grand canonical ensemble with a potential conjugated to the empty sites. This 
potential is adjusted at any temperature to give a fixed density of voids. We give in 
figure 14 a typical example with a density of voids equal to 10%. As can be seen in 
this figure, the specific heats have in fact a behaviour very similar to figure 9(b), the 
curves being simply shifted toward the low-temperature region. We have studied in 
this way different densities between 0 and 1 without any indication of a possible 
first-order phase transition. 

A second more important modification is that in the simulation of Baumgartner 
and Yoon (1983) there are several polymers, each of a size comparable with the sample 
size. Because the polymers can move with respect to each other this gives corrections 
to the free energy of the original Flory model which are in fact very important for the 
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0 5  1 0  1 5  

P 
Figure 14. Specific heat per occupied site for a system with 10% of empty sites (strips in 
the diagonal direction). The curves are shifted toward low temperatures when compared 
to figure 9. There is no evidence of a first-order phase transition. 

lengths of the chains which have been used (Petschek 1984). These corrections could 
explain the observed first-order phase transition as a finite (chain) size artefact (Petschek 
1984). We have thus also studied the case where several polymers are present. However 
by varying the mean length of the chains up to values comparable with the strip width 
we have not observed any indication of a first-order phase transition. 

The drawback of the transfer matrix in this case is that one can fix only the mean 
length of the chains but one cannot avoid the dispersity. It is not clear whether this 
dispersity could have an influence on the transition. More complete Monte Carlo 
simulations with a study of different distributions of chain lengths should clarify the 
situation. An attempt in this direction has already been made by Baumgartner (1984). 

5. Conclusion 

In conclusion our transfer matrix study of the Flory model gives evidence of an 
F-model-type phase transition, with only minor numerical differences. We have pro- 
posed that the discrepancy between this result and the results of Monte Carlo simula- 
tions could be due to the modifications of the model that the authors have been 
constrained to do for studying it by the reptation algorithm in an efficient way. As in 
the X Y  case, certain modifications of the precise form of the potential could perhaps 
drive the system to a first-order phase transition. We think that it would be interesting 
to carry out more complete Monte Carlo simulations to elucidate this point. 
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